

A System for M onitor ing and M anagement of Computational Gr ids

Warren Smith
Computer Sciences Corporation

NASA Ames Research Center
 wwsmith@nas.nasa.gov

Abstract
As organizations begin to deploy large computational

grids, it has become apparent that systems for observation
and control of the resources, services, and applications
that make up such grids are needed. Administrators must
observe resources and services to ensure that they are
operating correctly and must control resources and
services to ensure that their operation meets the needs of
users. Users are also interested in the operation of
resources and services so that they can choose the most
appropriate ones to use. In this paper we describe a
prototype system to monitor and manage computational
grids and describe the general software framework for
control and observation in distributed environments that it
is based on.

1. Introduction

A recent trend in government and academic research is
the development and deployment of computational grids
[14, 22]. Computational grids are large-scale distributed
systems that typically consist of high-performance
compute, storage, and networking resources. Examples of
such computational grids are the DOE Science Grid [3],
the NSF Partnerships for Advanced Computing
Infrastructure [6, 7], and the NASA Information Power
Grid [29]. Most of the work to deploy these grids is in
developing the software services to allow users to execute
applications on large and diverse sets of distributed
resources. These services include security, execution of
remote applications, managing remote data, access to
information about resources and services, and so on.
There are several toolkits that provide these services, such
as Globus [21], Legion [26], and Condor [30].

NASA is building a computational grid called the
Information Power Grid (IPG) that is based upon the
Globus toolkit. The IPG currently consists of resources
and users at four NASA centers and our attempt to deploy
a production grid of this size has highlighted the need for
systems to observe and control the resources, services,
and applications that make up such grids. We have found
it difficult to ensure that the many resources in the IPG
and the grid services executing on those resources are

performing correctly. We have also found it cumbersome
to perform administrative tasks such as adding grid users
to our resources. These observations have led to our
development of a system to address these needs.

This paper provides an overview of our system for
monitoring and managing a computational grid. It allows
administrators to observe the status of the resources and
services that make up a Globus-based computational grid,
to perform actions to correct failures, and perform day-to-
day administrative functions. This system is constructed
using the CODE toolkit [35] that provides a secure,
scalable, and extensible framework for making
observations on remote computer systems, transmitting
this observational data to where it is needed, performing
actions on remote computer systems, and analyzing
observational data to determine what actions should be
taken. We begin our discussion with an overview of the
CODE framework. Section 3 describes the current
functionality of our grid monitoring and management
system. Section 4 describes related work and Section 5
summarizes our work and presents future work.

2. CODE Framework

We have developed a software framework for Control
and Observation in Distributed Environments, called
CODE for obvious reasons [35]. We are using this
framework to implement several useful grid services,
including our grid monitoring and management system.
This section provides an overview of the framework.

2.1. Architecture

We call CODE a framework because it contains the core
code that is necessary for performing monitoring and
management. Users only need to add components to this
framework and start the framework running. For example,
if a user wants to create a host monitor, she would create
components to monitor processes, files, network
communications, and so on. The user would then add
these components to the framework and tell the
framework to begin monitoring the host. This same
process is used for adding components to perform
management actions. In fact, the typical process will be

easier because CODE provides a set of commonly used
components for observing various properties and
performing various actions and all a user will have to do is
select which of these components to use.

The CODE architecture is shown in Figure 1. The
components that are shown with a solid outline are those
that are supplied by our framework, the components that
are shown with a dashed outline are provided by the user,
and the gray boxes show the logical grouping of the
components in our framework into entities that may be on
different hosts. The logical components of our framework
are observers that perform and report observations, actors
that perform actions, managers that receive observations,
make decisions, and request actions, and a directory
service for locating observers and actors.

An observer is a process on a computer system that
provides information that can be measured from the
system it is executing on. This could be information about
the computer system, services or applications running on
that computer system, or information that is not related to
the computer system but that is accessible from it.
Examples of this last type of information are scheduling
queue information from a front-end system and the
current use of a local area network. An observer provides
information in the form of events. An event has a type and
contains data in the form of <name, value> pairs. The
values are typically of simple types such as string or
integers, but can also be structures. An observer allows a
manager to query for an event or to subscribe for a set of
events. A subscription is useful, for example, if a user
wants to be notified of the load on a system periodically
or notified whenever some fault condition occurs. Access

to events is controlled based on user identity and user
location on both a per-observer and a per-event type basis.

An observer consists of the following components:
• Sensor . A sensor is used to sense or measure some

property. For example, a CPU load sensor would
measure the CPU load of a host. A sensor is a passive
component that performs measurements only when
the sensor manager requests them. We are providing a
set of sensors as part of our framework, but users will
most likely need to implement sensors for their
specific purposes.

• Sensor Manager . The sensor manager receives event
requests or subscriptions from the event producer
interface, uses the appropriate sensor at the
appropriate time to perform a measurement, and
sends the result of the measurement to the event
producer interface in the form of an event.

• Event Producer Inter face. The event producer
interface provides an interface for observers to access
a distributed event service. This event service allows
event subscriptions to be established between
producers and consumers, allows consumers to query
for events from producers, and allows producers to
send events to consumers.

An actor is a process on a computer system that can be
asked to perform actions. These actions are made from the
actor process and could affect local or remote resources,
services, and applications. Access to actions is controlled
based on user identity and user location on both a per-
actor and a per-action type basis. An actor consists of the
following components:

Sensor
Manager

Actuator
Manager

E
ve

nt
 P

ro
du

ce
r

In
te

rf
ac

e

Actuator

Sensor
Observer

Actor

 A
ct

or

In
te

rf
ac

e

request
events

events

perform
action

E
ve

nt
 C

on
su

m
er

In

te
rf

ac
e

Management
Logic

Manager
 D

ir
ec

to
r

In

te
rf

ac
e

action
results

Directory
Service

advertise
observer

advertise
actor search for

observers and
controllers

Sensor

Sensor

Actuator

Actuator

Figure 1. Architecture of the CODE framework.

• Actuator . An actuator is a component that can be
used to perform a specific action. For example, an
actuator can be used to start a daemon. An actuator is
a passive component that performs actions only when
the actuator manager requests them. We are providing
a set of actuators as part of our framework, but users
will most likely need to implement actuators for their
own specific purposes.

• Actuator Manager . The actuator manager receives
requests to perform actions from the actor interface,
uses the appropriate actuator to perform the action,
and sends the results of the action back to the actor
interface.

• Actor Inter face. The actor interface provides an
interface to a distributed action service that transmits
requests for actions and their results.

A manager is a process that asks observers for
information, reasons upon that information, and asks
actors to take actions when the observations indicate that
actions need to be taken. A manager consists of the
following components:
• Management Logic. The management logic receives

events from the event consumer interface, reasons
upon this information to determine if any actions
need to be taken, and then takes any actions using the
director interface. There are two ways to implement
the management logic:
o Write C++ or Java code that contains a series of

if and case statements, a state machine, or
whatever code is needed to decide what actions
to perform.

o Use an expert system and write management
rules. We are experimenting with using the
CLIPS expert system [25] to simplify the writing
of managers.

• Event Consumer Inter face. The event consumer
interface is used to request events from observers and
receive those events.

• Director Inter face. The director interface is used to
request that actors perform actions and to receive the
results of those actions.

A common component of a computational grid is a
directory service or grid information service [20]. For our
purposes, a directory service is a distributed database that
is accessed using the Lightweight Directory Access
Protocol (LDAP) [28]. We use a directory service to store
the locations of observers and actors, describe what types
of observations and actions they provide, and allow
managers to search for the observers and actors.

2.2. I mplementation

We have implemented the CODE framework in C++
and in Java so that it can be used from a variety of
programming languages. At this point, the CODE

framework supports communication using TCP, UDP, and
SSL. The SSL communication is implemented using the
Globus Grid Security Infrastructure [23]. The CODE
framework is an implementation of the Grid Monitoring
Architecture [40] defined in the Global Grid Forum and
supports encoding of communication messages with
extension of the event protocol [37, 38] that is being
defined in the Global Grid Forum. This protocol encodes
data using the eXtensible Markup Language (XML) and
CODE uses the Xerces XML parsers to decode messages.
Further, the format of the data CODE places in the
directory service is compatible with the LDAP schemas
[36] being defined in the Global Grid Forum.

3. Grid M anagement System

As computational grids grow, it becomes very difficult
to ensure the correct operation of the large number of
resources and services that make up a grid and to
configure the services that are available on a grid. We
have developed a prototype Grid Management System
(GMS) to assist with these tasks in a Globus-based grid
such as the NASA Information Power Grid. Figure 2
shows the high-level architecture of this system and we
will describe the components of this architecture next.

3.1. GRAM Management Agent

The Globus toolkit includes a service called the Globus
Resource Allocation Manager (GRAM) [17] that allows
remote users to execute applications on a computer
system. Our system has an agent on each host that has a
GRAM server. The purpose of this agent is to ensure that
the GRAM service is available to users, that the computer
system it is associated with is operating correctly, and that
there is network connectivity to other GRAM hosts. The
GRAM management agent contains a CODE observer,
actor, and manager. The observer is used to monitor the
following properties:
1. The network latency between the GRAM host and

other GRAM hosts. These latencies are used in this
situation to detect any network problems. The ping
sensor measures round trip times using the Unix ping
command.

2. The available network bandwidth between the
GRAM host and other GRAM hosts. These
bandwidth measurements are also used to detect
network problems and help users select resources.
The IPerf [42] network measurement tool is used to
make these measurements.

3. The CPU load is measured to determine if the
computer system is overloaded and unusable. This
measurement is made using three different sensors.
One sensor uses the Unix uptime program, a second
uses the PBS qstat command, and the third uses the

LSF bjobs command. The sensor that is used depends
on how access to the computer system is scheduled.

4. The memory statistics are measured using the Unix
vmstat command, or similar commands, to determine
if the memory subsystem is overloaded.

5. The available disk space is measured using the Unix
df command. The GRAM servers require some
minimal amount of disk space to operate.

6. The status of the GRAM reporter. The IPG is
currently running the Globus MDS in classic mode.
In that mode, a GRAM reporter daemon is executing
on each GRAM host and writing data into a remote
LDAP server.

7. The GRAM log files. These log files contain
information about usage of the GRAM service and
information about any problems that occur. These log
files are observed for any problems.

8. The GRAM grid map file. This file specifies which
grid users can execute applications through the
GRAM service and also maps grid user identifiers to
local Unix user identifiers. This information is
provided so that remote administrators can determine
and modify which grid users can use the GRAM
service.

The actor has actuators to perform the following actions:
1. Start and stop the Iperf server. An Iperf server is

needed so that Iperf clients can connect and perform
Iperf experiments.

2. Send email. The email actuator is used to send email
to administrators when a problem cannot be handled
automatically, but must be corrected immediately.

3. Modify the GRAM gridmap file. This actuator is used
by the remote management GUI so that access to the
GRAM service on the host can be given to or taken
away from grid users and the mapping of grid users to
local user identities can be modified

4. Start, stop, or restart the GRAM reporter. If the
GRAM reporter is not running or is not responding it
can be stopped or started.

The GRAM management agent also includes a CODE
manager. At this time, this manager does not receive any
observations nor perform any actions. This approach
assumes that the management of a grid takes place in the
management GUIs. In the future, this manager will
receive observations and perform actions so that
management functionality will be offloaded to the GRAM
manager and that the system will be more scalable.

When this agent begins executing, it locates the event
archive (described further in Section 3.3) using the
directory service and initiates subscriptions with the
archive as the producer of events. These subscriptions
indicate that the GRAM management agent will send
events to the archive when problems occur. These
problems include excessive CPU or memory use, failure
of the GRAM reporter, or problems in the GRAM log
files. At any time, management GUIs can contact this
agent to receive information or request that actions be
performed.

3.2. GIS Management Agent

A Globus-based computational grid also has a
distributed database, called a Grid Information Service
(GIS) that contains information about the resources, users,
services, and applications that are part of the
computational grid. The Globus GIS is the called the
Metacomputing Directory Service [16]. A GIS typically
consists of multiple servers running on multiple hosts. Our
architecture includes an agent to monitor the operation of
GIS servers, to determine if there are any problems, and to
take actions to attempt to address any problems. Similarly
to the GRAM agent, this agent provides observational
data to remote agents and allows authorized remote agents
to request actions. The GIS management agent for each

Management GUI

1. Subscribe
2. Events when problems

1. Events describing current state
2. Action requests

GRAM Management Agent

GIS Management Agent

Event
Archive

Management GUI

Query for events that
describe problems

Directory
Service

Find managers
and archive

Advertise existence

Figure 2. Architecture of our grid monitoring and management system.

GIS server consists of an observer, an actor, and a
manager. The observer monitors the following properties:
1. The network connectivity between the GIS hosts.

LDAP servers typically refer searches for information
to other LDAP servers.

2. The CPU load of the host.
3. The available memory of the host.
4. The available disk space.
5. The status of the LDAP server itself. This is

measured in two ways. First, the existence of the
LDAP server process is observed. Second, the time to
request a search and receive a reply is measured.

The actor that is part of a GIS management agent is
relatively simple: It only has two actuators at the current
time. One actuator is used to send emails. The other
actuator is used to start, stop, and restart the LDAP server.
The GIS management agent also includes a CODE
manager. At this time, this manager does not receive any
observations nor perform any actions.

When the GIS management agent begins executing, it
locates the event archive using the directory service and
initiates subscriptions with the archive as the producer of
events. These subscriptions indicate that the GIS
management agent will send events to the archive when
problems occur.

3.3. Event Archive

The event archive stores events so that management
GUIs can obtain information about problems that have
occurred in the past. The archive acts as an event
consumer for events generated by GRAM and GIS
management agents and acts as a producer of events for
management GUIs. GRAM and GIS management agents
use the directory service to find the archive and then they
initiate a subscription to the archive. The agents then send
events to the archive whenever problems occur.
Management GUIs also find the archive using the
directory service. They then query for events from the

Figure 3. Management GUI displaying the status of a subset of the resources on the NASA IPG.

archive. This query contains an event filter that is used to
select which events to return. At the current time, we are
using the Xpath [15] language as our filter language and
the Xindice [12] XML database to store our events.

3.4. Directory Service

As described in Section 2.1, the observers and actors on
the GRAM and GIS hosts register themselves in the
directory service so that managers can find them. The
event archive also registers itself so that management
GUIs, GRAM managers, and GIS managers can find it.

3.5. Management GUI

The final component of our grid monitoring and
management system is a graphical user interface that is
used by grid administrators. Instances of this interface can
be started and stopped at any time by multiple
administrators. This interface allows grid administrators to
view the current status of a grid, be notified when
problems occur on the grid, examine problems that have
occurred in the past, and perform grid administrative
tasks. Figure 3 shows the management GUI being used to
show the status of a subset of the resources on the NASA
IPG. While the colors can’ t be seen here, the boxes
around each computer system icon indicate whether status
information from the machine has been received recently.
The boxes are colored green when information has been
received recently, yellow when an expected event has not
been received, and red when two expected events have not
been received. The vertical progress bars next to each
computer system icon show what fraction of the CPUs in
that computer system is being used. The lines between
computer systems indicate whether the machines can ping
each other. They are also colored green, yellow, and red to
indicate if pings have been successful. The progress bars
next to the lines show the fraction of maximum measured
bandwidth, in both directions, that was available during
the last bandwidth experiment. The computers and

networks to monitor along with icon selection and
placement of all of the graphical components are stored in
a configuration file that is loaded when the GUI starts.

As you can see from the figure, a user of the
management GUI can quickly understand the status of
some of the major IPG systems and the networks that
connect them. Users can also click on any of the machines
or network connections to display more detailed
information such as that shown in Figure 4.

This interface can also be used to perform administrative
tasks. At the current time, the interface allows an
administrator to add, remove, and modify users in the
GRAM grid map files on the remote computer systems.
This interface provides several different ways to view user
access. One display shows the grid user to local user name
mappings for a single computer system and allows
modifications to these mappings. Another display shows
all of the computers that a grid user has access to and all
of the local user names the grid user maps to. An
administrator can use this display to add or remove access
to computer systems and specify which local user name a
grid user should map to.

4. Related Work

There are many existing systems for remote monitoring
and management of networks and computer systems. A
few commercial systems are OpenView [4] from Hewlett
Packard, ManagementCenter [10] from Sun, Works2000
[2] from Cisco, Unicenter Networks and Systems
Management [11] from Computer Associates, Tivoli
Enterprise Console [5] and related products from IBM,
PATROL [8] from BMC Software, and SiteAssure [9]
from Platform Computing. These systems typically
provide a wide range of monitoring and management
services for a variety of resources. There are several
problems with using these tools in our current grid
environments. First, these products do have a cost
associated with them, which may be difficult to afford for
all of the participants in a multi-institution research grid.

Figure 4. Detailed information about the load on the SGI Origin lomax.nas.nasa.gov and about the
connection between lomax.nas.nasa.gov (in California) and rogallo.larc.nasa.gov (in Virginia).

Other problems are the lack of standards and
compatibility between products and the lack of portability
because of the unavailability of source code. Further, such
tools do not support the grid security infrastructure. There
are other systems that are free for noncommercial use or
open source, but these tools tend to lack the functionality
of the commercial tools previously mentioned and would
need to be extended to manage grid services. Examples of
such tools are NetSaint [24] and Big Brother [1]. Many of
these types of tools are based on the Simple Network
Management Protocol [39] that can provide information
on networking and other types of resources, services, and
so on.

Another area of related work is distributed event
services, one of the core components of our framework.
There has also been a large amount of work in this area.
CORBA has defined an event service [31] and a
notification service [32]. The problem with these services
is that they are part of CORBA, which is not commonly
used in grid computing. There Java Messaging Service
[27] has support for distributed event services, but this
only supports the Java language. There are also research
projects to develop distributed event services such as
Sienna [13], Elvin [33], Echo [18], OIF [19], and XEvents
[34] and research projects to perform various types of
monitoring such as NWS [43], JAMM [41], and MDS
[16]. Many of these services are quite usable, the main
advantage of the one that is part of our framework is that
it will continue to be compatible with the standards
defined in the Grid Forum. The benefit of this is that each
implementation of an event service or monitoring system
will have positives and negatives in terms of
programming language, performance, and usability.
Standards allow users to select the best implementations
for their needs and still communicate with other
implementations that are optimized for different purposes.

5. Summary and Future Work

Our efforts to deploy a computational grid at NASA
have demonstrated the need for tools to observe and
control the resources, services, and applications that make
up grids. This has led to our development of CODE which
provides a secure, scalable, and extensible framework for
making observations from remote computer systems,
transmitting this observational data to where it is needed,
performing actions from remote computer systems, and
analyzing observational data to determine what actions
should be taken.

A prototype of our framework is complete and we are
continuing to improve it. In addition to the core
framework, we have implemented sensors for measuring
various properties such as process status, file
characteristics, disk space, CPU load, network interface
characteristics, and LDAP search performance. We have

also implemented a few simple actuators. We have used
this framework to develop a prototype grid management
system that allows administrators to observe the current
status of the resources and services that make up a grid, to
correct problems when they appear, and to perform
administrative tasks such as modifying which grid users
can access which computer systems. The grid
management system also records failures that occur so
that they can be examined at a later time.

In the future we will continue to improve and extend the
CODE framework and we will also improve our Grid
Management System as we gain experience from its use.
Further, we will track the standards for grid event services
that are being developed in the Global Grid Forum and
will strive to be compatible with those standards.

Acknowledgments

We gratefully acknowledge the help of Abdul Waheed
who participated in the early phases of this project and of
Jerry Yan who provided the initial motivation. We also
wish to thank Dan Gunter, Ruth Aydt, Brian Tierney,
Dennis Gannon, and Valerie Taylor for the many useful
discussions we have had related to this work both inside
and outside of the Grid Forum. This work has been
supported by the NASA HPCC and CICT programs.

References

[1] "Big Brother," http://bb4.com/.
[2] "CiscoWorks2000,"

http://www.cisco.com/warp/public/44/jump/ciscowork
s.shtml.

[3] "The DOE Science Grid," http://www-itg.lbl.gov/Grid.
[4] "HP OpenView," http://www.openview.hp.com.
[5] "IBM Tivoli Enterprise Console,"

http://www.tivoli.com/products/index/enterprise-
console/.

[6] "The National Computational Science Alliance,"
http://www.ncsa.uiuc.edu/access/index.alliance.html.

[7] "The National Partnership for Advanced Computing
Infrastructure," http://www.npaci.edu/.

[8] "PATROL Console," http://www.bmc.com/products/.
[9] "Platform SiteAssure,"

http://www.platform.com/products/rm/SiteAssure/inde
x.asp.

[10] "Sun Management Center,"
http://wwws.sun.com/software/solaris/sunmanagement
center/.

[11] "Unicenter Network and Systems Management,"
http://www3.ca.com/solutions/product.asp?id=2869.

[12] "Xindice," http://xml.apache.org/xindice.
[13] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf,

"Achieving Scalability and Expressiveness in an
Internet-Scale Event Notification Service." In
Proceedings of the Ninteenth ACM Symposium on
Principles of Distributed Computing, Portland, OR,
2000.

[14] C. Catlett and L. Smarr, "Metacomputing," in
Communications of the ACM, vol. 35, 1992, pp. 44-52.

[15] J. Clark and S. DeRose, "XML Path Language (XPath)
Version 1.0," World Wide Web Consortium
November 16 1999.

[16] K. Czajkowski, S. Fitzgerald, I. Foster, and C.
Kesselman, "Grid Information Services for Distributed
Resource Sharing." In Proceedings of the The 10th
IEEE International Symposium on High Performance
Distributed Computing, 2001.

[17] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S.
Martin, W. Smith, and S. Tuecke, "A Resource
Management Architecture for Metasystems," Lecture
Notes on Computer Science, vol. 1459, 1998.

[18] G. Eisenhauer, F. Bustamante, and K. Schwan, "Event
Services for High Performance Computing." In
Proceedings of the 9th IEEE International Symposium
on High Performance Distributed Computing, 2000.

[19] R. E. Filman and D. D. Lee, "Managing Distributed
Systems with Smart Subscriptions." In Proceedings of
the International Conference on Parallel and
Distributed Processing Techniques and Applications,
Las Vegas, NV, 2000.

[20] S. Fitzgerald, I. Foster, C. Kesselman, G. v.
Laszewski, W. Smith, and S. Tuecke, "A Directory
Service for Configuring High-Performance Distributed
Computations." In Proceedings of the 6th IEEE
International Symposium on High Performance
Distributed Computing, 1997.

[21] I. Foster and C. Kesselman, "Globus: A
Metacomputing Infrastructure Toolkit," International
Journal of Supercomputing Applications, vol. 11, pp.
115-128, 1997.

[22] I. Foster and C. Kesselman, "The Grid: Blueprint for a
New Computing Infrastructure,".: Morgan Kauffmann,
1999.

[23] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke, "A
Security Architecture for Computational Grids." In
Proceedings of the 5th ACM Conference on Computer
and Communications Security, 1998.

[24] E. Galstad, "NetSaint Network Monitor,"
http://www.netsaint.org/.

[25] J. Giarratano, Expert Systems: Principles and
Programming: Brooks and Cole Publishing, 1998.

[26] A. Grimshaw, W. Wulf, J. French, A. Weaver, and P.
R. Jr., "Legion: The Next Logical Step Toward A
Nationwide Virtual Computer," Department of
Computer Science, University of Virginia CS-94-21,
June, 1994 1994.

[27] M. Hapner, R. Burridge, R. Sharma, J. Fialli, and K.
Stout, "Java Message Service Specification v1.1," Sun
Microsystems June 2002.

[28] T. Howes and M. Smith, LDAP: Programming
Directory-Enabled Applications with Lightweight
Directory Access Protocol: Macmillan Technical
Publishing, 1997.

[29] W. Johnston, D. Gannon, and B. Nitzberg, "Grids as
Production Computing Environments: The
Engineering Aspects of NASA's Information Power
Grid." In Proceedings of the 8th IEEE International

Symposium on High Performance Distributed
Computing, 1999.

[30] M. Litzkow and M. Livny, "Experience with the
Condor Distributed Batch System." In Proceedings of
the IEEE Workshop on Experimental Distributed
Systems, 1990.

[31] OMG, "Event Service Specification v1.1,", 2001-03-
01, March 2001.

[32] OMG, "Notification Service Specification v1.0,",
2000-06-20, June 2000.

[33] B. Segall, D. Arnold, J. Boot, M. Henderson, and T.
Phelps, "Content Based Routing with Elvin4." In
Proceedings of the AUUG2k, Canberra, Australia,
2000.

[34] A. Slominski, M. Govindaraju, D. Gannon, and R.
Bramley, "SoapRMI Events: Design and
Implementation," Computer Science Department,
Indiana University TR549, May 2001.

[35] W. Smith, "A Framework for Control and Observation
in Distributed Environments," NASA Advanced
Supercomputing Division, NASA Ames Research
Center, Moffett Field, CA NAS-01-006, June 2001.

[36] W. Smith and D. Gunter, "Simple LDAP Schemas for
Grid Monitoring," The Global Grid Forum GWD-Perf-
13-1, 2001.

[37] W. Smith, D. Gunter, and D. Quesnel, "A Simple
XML Producer-Consumer Protocol," The Global Grid
Forum GWD-Perf-8-2, 2001.

[38] W. Smith, D. Gunter, and D. Quesnel, "An XML-
Based Protocol for Distributed Event Services." In
Proceedings of the The 2001 International Conference
on Parallel and Distributed Processing Techniques and
Applications, Las Vegas, NV, 2001.

[39] W. Stallings, SNMP, SNMPv2, and CMIP: The
Practical Guide to Network-Management Standards.
Reading, Massachusetts: Addison-Wesley, 1993.

[40] B. Tierney, R. Aydt, D. Gunter, W. Smith, Valerie
Taylor, R. Wolski, and M. Swany, "A Grid Monitoring
Service Architecture," Global Grid Forum
Performance Working Group 2001.

[41] B. Tierney, B. Crowley, D. Gunter, M. Holding, J.
Lee, and M. Thompson, "A Monitoring Sensor
Management System for Grid Environments." In
Proceedings of the 9th IEEE Symposium on High
Performance Distributed Computing, Pittsburgh, PA,
2000.

[42] A. Tirumala and J. Ferguson, "Iperf Version 1.2,"
http://dast.nlanr.net/Projects/Iperf/.

[43] R. Wolski, "Forecasting Network Performance to
Support Dynamic Scheduling Using the Network
Weather Service." In Proceedings of the 6th IEEE
Symposium on High Performance Distributed
Computing, 1997.

